APPENDIX E

TIMBER MANAGEMENT STANDARDS AND GUIDELINES

OBJECTIVES

The King Range will be managed to protect and enhance conditions of late-successional and old-growth forest ecosystems, which serve as habitat for late-successional and old-growth related species including the northern spotted owl. These reserves are designed to maintain a functional, interacting, late-successional and old-growth forest ecosystem.

SILVICULTURE

Stand and vegetation management of any kind, including prescribed burning, is considered a silvicultural treatment

Thinning (precommercial and commercial) may occur in stands up to 80 years old regardless of the origin of the stands (e.g., plantations planted after logging or stands naturally regenerated after fire or blowdown). The purpose of these silvicultural treatments is to benefit the creation and maintenance of late-successional forest conditions. Examples of silvicultural treatments that may be considered beneficial include thinnings in existing even-age stands and prescribed burning. For example, some areas within the King Range are actually young single-species stands. Thinning these stands can open up the canopy, thereby increasing diversity of plants and animals and hastening transition to a forest with mature characteristics.

Guidelines to Reduce Risks of Large-Scale Disturbance

- Large-scale disturbances are natural events, such as fire, that can eliminate spotted owl habitat on
 hundreds or thousands of acres. Certain risk management activities, if properly planned and
 implemented, may reduce the probability of these major stand-replacing events. Elevated risk
 levels are attributed to changes in the characteristics and distribution of the mixed-conifer forests
 resulting from past fire protection. Risk reduction efforts are encouraged where they are
 consistent with the overall recommendations in these guidelines.
- Silvicultural activities aimed at reducing risk shall focus on younger stands in the King Range.
 The objective will be to accelerate development of late-successional conditions while making the
 future stand less susceptible to natural disturbances. Salvage activities should focus on the
 reduction of catastrophic insect, disease, and fire threats. Treatments should be designed to
 provide effective fuel breaks wherever possible. However, the scale of salvage and other
 treatments should not generally result in degeneration of currently suitable owl habitat or other
 late-successional conditions.
- In some areas of the King Range, management that goes beyond these guidelines may be
 considered. Levels of risk in those areas that are particularly high may require additional
 measures. Consequently, management activities designed to reduce risk levels are encouraged,

even if a portion of the activities must take place in currently late-successional habitat. While risk-reduction efforts should generally be focused on young stands, activities in older stands may be appropriate if: (1) the proposed management activities will clearly result in greater assurance of long-term maintenance of habitat, (2) the activities are clearly needed to reduce risks, and (3) the activities will not prevent the area from playing an effective role in the objectives for which they were established.

• Such activities in older stands may also be undertaken in the King Range if levels of fire risk are particularly high.

Guidelines for Salvage

- Salvage of dead trees is not generally considered a silvicultural treatment within the context of these standards and guidelines.
- Salvage is defined as the removal of trees from an area following a stand-replacing event such as those caused by wind, fires, insect infestations, volcanic eruptions, or diseases. Salvage guidelines are intended to prevent negative effects on late-successional habitat, while permitting some commercial wood volume removal. In some cases, salvage operations may actually facilitate habitat recovery. For example, excessive amounts of coarse woody debris may interfere with stand regeneration activities following some disturbances. In other cases, salvage may help reduce the risk of future stand-replacing disturbances. While priority should be given to salvage in areas where it will have a positive effect on late-successional forest habitat, salvage operations should not diminish habitat suitability now or in the future.
- Tree mortality is a natural process in a forest ecosystem. Diseased and damaged trees are key structural components of late-successional forests. Accordingly, management planning for the King Range must acknowledge the considerable value of retaining dead and dying trees in the forest as well as the benefits from salvage activities.

In all cases, planning for salvage should focus on long-range objectives, which are based on desired future condition of the forest. Because the King Range has been established to provide high quality habitat for species associated with late-successional forest conditions, management following a stand-replacing event should be designed to accelerate or not impede the development of those conditions. The rate of development of this habitat will vary among provinces and forest types and will be influenced by a complex interaction of stand-level factors that include site productivity, population dynamics of live trees and snags, and decay rates of coarse woody debris. Because there is much to learn about the development of species associated with these forests and their habitat, it seems prudent to only allow removal of conservative quantities of salvage material from the King Range and retain management opportunities until the process is better understood.

The following guidelines are general. Specific guidelines should be developed for each physiographic province, and possibly for different forest types within provinces.

1. The potential for benefit to species associated with late-successional forest conditions from salvage is greatest when stand-replacing events are involved. Salvage in disturbed sites of less than 10 acres is not appropriate because small forest openings are an important component of

- old-growth forests. In addition, salvage should occur only in stands where disturbance has reduced canopy closure to less than 40 percent, because stands with more closure are likely to provide some value for species associated with these forests.
- 2. Surviving trees will provide a significant residual of larger trees in the developing stand. In addition, defects caused by fire in residual trees may accelerate development of structural characteristics suitable for associated species. Also, those damaged trees that eventually die will provide additional snags. Consequently, all standing live trees should be retained, including those injured (e.g., scorched) but likely to survive. Inspection of the cambium layer can provide an indication of potential tree mortality.
- 3. Snags provide a variety of habitat benefits for a variety of wildlife species associated with late-successional forests. Accordingly, following stand-replacing disturbance, management should focus on retaining snags that are likely to persist until late-successional conditions have developed and the new stand is again producing large snags. Late-successional conditions are not associated with stands less than 80 years old.
- 4. Following a stand-replacing disturbance, management should retain adequate coarse woody debris quantities in the new stand so that in the future it will still contain amounts similar to naturally regenerated stands. The analysis that determines the amount of coarse woody debris to leave must account for the full period of time before the new stand begins to contribute coarse woody debris. As in the case of snags, province-level specifications must be provided for this guideline. Because coarse woody debris decay rates, forest dynamics, and site productivity undoubtedly will vary among provinces and forest types, the specifications also will vary.

Province-level plans will establish appropriate levels of coarse woody debris and decay rates to be used. Levels will be "typical" and will not require retention of all material where it is highly concentrated, or too small to contribute to coarse woody debris over the long timeframes discussed. This standard and guideline represents one item to be considered and may indeed result in no salvage following windthrow in low density stands. As for other management activities, it is expected that salvage standards and guidelines will be refined through the implementation and adaptive management processes.

- 5. Some salvage that does not meet the preceding guidelines will be allowed when salvage is essential to reduce the future risk of fire or insect damage to late-successional forest conditions. This circumstance is most likely to occur in the eastern Oregon Cascades, eastern Washington Cascades, and California Cascades Provinces, and somewhat less likely to occur in the Oregon Klamath and California Klamath Provinces. It is important to understand that some risk associated with fire and insects is acceptable because they are natural forces influencing late-successional forest development. Consequently, salvage to reduce such risks should focus only on those areas where there is high risk of large-scale disturbance.
- 6. Removal of snags and logs may be necessary to reduce hazards to humans along roads and trails, and in or adjacent to campgrounds. Where materials must be removed from the site, as in a campground or on a road, a salvage sale is appropriate. In other areas, such as along roads, leaving material on site should be considered. Also, material will be left where available coarse

woody debris is inadequate.

- 7. Where green trees, snags, and logs are present following disturbance, the green-tree and snag guidelines will be applied first, and completely satisfied where possible. The biomass left in snags can be credited toward the amount of coarse woody debris biomass needed to achieve management objectives.
- 8. These basic guidelines may not be applicable after disturbances in younger stands because remnant coarse woody debris may be relatively small. In these cases, diameter and biomass retention guidelines should be developed consistent with the intention of achieving late-successional forest conditions.
- 9. Logs present on the forest floor before a disturbance event provide habitat benefits that are likely to continue. It seldom will be appropriate to remove them. Where these logs are in an advanced state of decay, they will not be credited toward objectives for coarse woody debris retention developed after a disturbance event. Advanced state of decay should be defined as logs not expected to persist to the time when the new stand begins producing coarse woody debris.
- 10. The coarse woody debris retained should approximate the species composition of the original stand to help replicate preexisting suitable habitat conditions.
- 11. Some deviation from these general guidelines may be allowed to provide reasonable access to salvage sites and feasible logging operations. Such deviation should occur on as small a portion of the area as possible, and should not result in violation of the basic intent that late-successional forest habitat or the development of such habitat in the future should not be impaired throughout the area. While exceptions to the guidelines may be allowed to provide access and operability, some salvage opportunities will undoubtedly be foregone because of access, feasibility, and safety concerns.

MULTIPLE-USE ACTIVITIES OTHER THAN SILVICULTURE

The following standards and guidelines apply to the King Range.

As a general guideline, nonsilvicultural activities located inside the King Range that are neutral or beneficial to the creation and maintenance of late-successional habitat are allowed.

• Road Construction and Maintenance - Road construction in the King Range for silvicultural, salvage, and other activities generally is not recommended unless potential benefits exceed the costs of habitat impairment. If new roads are necessary to implement a practice that is otherwise in accordance with these guidelines, they will be kept to a minimum, be routed through non-late-successional habitat where possible, and be designed to minimize adverse impacts. Alternative access methods, such as aerial logging, should be considered to provide access for activities in reserves. Road maintenance may include felling hazard trees along rights-of-way. Leaving material on site should be considered if available coarse woody debris is inadequate. Topping trees should be considered as an alternative to felling.

- Fuelwood Gathering Fuelwood gathering will be permitted only in existing cull decks, where green trees are marked by silviculturists to thin (consistent with standards and guidelines), to remove blowdown blocking roads, and in recently harvested timber sale units where down material will impede scheduled post-sale activities or pose an unacceptable risk of future large-scale disturbances. In all cases these activities should comply with the standards and guidelines for salvage and silvicultural activities.
- Special Forest Products Special forest products include but are not limited to posts, poles, rails, landscape transplants, yew bark, shakes, seed cones, Christmas trees, boughs, mushrooms, fruits, berries, hardwoods, forest greens (e.g., ferns, huckleberry, salal, beargrass, Oregon grape, and mosses), and medicinal forest products. In all cases, evaluate whether activities have adverse effects on the King Range objectives. Sales will ensure resource sustainability and protection of other resource values such as special status plant or animal species. Where these activities are extensive (e.g., collection of Pacific Yew bark or fungi), it will be appropriate to evaluate whether they have significant effects on late-successional habitat. Restrictions may be appropriate in some cases.

This page intentionally left blank.